1,247 research outputs found

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    Perceptual multistability as Markov Chain Monte Carlo inference

    Get PDF
    While many perceptual and cognitive phenomena are well described in terms of Bayesian inference, the necessary computations are intractable at the scale of real-world tasks, and it remains unclear how the human mind approximates Bayesian computations algorithmically. We explore the proposal that for some tasks, humans use a form of Markov Chain Monte Carlo to approximate the posterior distribution over hidden variables. As a case study, we show how several phenomena of perceptual multistability can be explained as MCMC inference in simple graphical models for low-level vision

    Nephrogenic Syndrome of Inappropriate Antidiuresis

    Get PDF
    Mutations in the vasopressin V2 receptor gene are responsible for two human tubular disorders: X-linked congenital nephrogenic diabetes insipidus, due to a loss of function of the mutant V2 receptor, and the nephrogenic syndrome of inappropriate antidiuresis, due to a constitutive activation of the mutant V2 receptor. This latter recently described disease may be diagnosed from infancy to adulthood, as some carriers remain asymptomatic for many years. Symptomatic children, however, typically present with clinical and biological features suggesting inappropriate antidiuretic hormone secretion with severe hyponatremia and high urine osmolality, but a low plasma arginine vasopressin level. To date, only two missense mutations in the vasopressin V2 receptor gene have been found in the reported patients. The pathophysiology of the disease requires fuller elucidation as the phenotypic variability observed in patients bearing the same mutations remains unexplained. The treatment is mainly preventive with fluid restriction, but urea may also be proposed

    Fragment Grammars: Exploring Computation and Reuse in Language

    Get PDF
    Language relies on a division of labor between stored units and structure building operations which combine the stored units into larger structures. This division of labor leads to a tradeoff: more structure-building means less need to store while more storage means less need to compute structure. We develop a hierarchical Bayesian model called fragment grammar to explore the optimum balance between structure-building and reuse. The model is developed in the context of stochastic functional programming (SFP) and in particular using a probabilistic variant of Lisp known as the Church programming language (Goodman, Mansinghka, Roy, Bonawitz, & Tenenbaum, 2008). We show how to formalize several probabilistic models of language structure using Church, and how fragment grammar generalizes one of them---adaptor grammars (Johnson, Griffiths, & Goldwater, 2007). We conclude with experimental data with adults and preliminary evaluations of the model on natural language corpus data

    ExplainIt! -- A declarative root-cause analysis engine for time series data (extended version)

    Full text link
    We present ExplainIt!, a declarative, unsupervised root-cause analysis engine that uses time series monitoring data from large complex systems such as data centres. ExplainIt! empowers operators to succinctly specify a large number of causal hypotheses to search for causes of interesting events. ExplainIt! then ranks these hypotheses, reducing the number of causal dependencies from hundreds of thousands to a handful for human understanding. We show how a declarative language, such as SQL, can be effective in declaratively enumerating hypotheses that probe the structure of an unknown probabilistic graphical causal model of the underlying system. Our thesis is that databases are in a unique position to enable users to rapidly explore the possible causal mechanisms in data collected from diverse sources. We empirically demonstrate how ExplainIt! had helped us resolve over 30 performance issues in a commercial product since late 2014, of which we discuss a few cases in detail.Comment: SIGMOD Industry Track 201

    Modeling human intuitions about liquid flow with particle-based simulation

    Full text link
    Humans can easily describe, imagine, and, crucially, predict a wide variety of behaviors of liquids--splashing, squirting, gushing, sloshing, soaking, dripping, draining, trickling, pooling, and pouring--despite tremendous variability in their material and dynamical properties. Here we propose and test a computational model of how people perceive and predict these liquid dynamics, based on coarse approximate simulations of fluids as collections of interacting particles. Our model is analogous to a "game engine in the head", drawing on techniques for interactive simulations (as in video games) that optimize for efficiency and natural appearance rather than physical accuracy. In two behavioral experiments, we found that the model accurately captured people's predictions about how liquids flow among complex solid obstacles, and was significantly better than two alternatives based on simple heuristics and deep neural networks. Our model was also able to explain how people's predictions varied as a function of the liquids' properties (e.g., viscosity and stickiness). Together, the model and empirical results extend the recent proposal that human physical scene understanding for the dynamics of rigid, solid objects can be supported by approximate probabilistic simulation, to the more complex and unexplored domain of fluid dynamics.Comment: Under review at PLOS Computational Biolog

    Probing the compositionality of intuitive functions

    Get PDF
    How do people learn about complex functional structure? Taking inspiration from other areas of cognitive science, we propose that this is accomplished by harnessing compositionality: complex structure is decomposed into simpler building blocks. We formalize this idea within the framework of Bayesian regression using a grammar over Gaussian process kernels. We show that participants prefer compositional over non-compositional function extrapolations, that samples from the human prior over functions are best described by a compositional model, and that people perceive compositional functions as more predictable than their non-compositional but otherwise similar counterparts. We argue that the compositional nature of intuitive functions is consistent with broad principles of human cognition.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF – 1231216

    NeuSE: Neural SE(3)-Equivariant Embedding for Consistent Spatial Understanding with Objects

    Full text link
    We present NeuSE, a novel Neural SE(3)-Equivariant Embedding for objects, and illustrate how it supports object SLAM for consistent spatial understanding with long-term scene changes. NeuSE is a set of latent object embeddings created from partial object observations. It serves as a compact point cloud surrogate for complete object models, encoding full shape information while transforming SE(3)-equivariantly in tandem with the object in the physical world. With NeuSE, relative frame transforms can be directly derived from inferred latent codes. Our proposed SLAM paradigm, using NeuSE for object shape and pose characterization, can operate independently or in conjunction with typical SLAM systems. It directly infers SE(3) camera pose constraints that are compatible with general SLAM pose graph optimization, while also maintaining a lightweight object-centric map that adapts to real-world changes. Our approach is evaluated on synthetic and real-world sequences featuring changed objects and shows improved localization accuracy and change-aware mapping capability, when working either standalone or jointly with a common SLAM pipeline.Comment: 15 Pages and 12 figures. Accepted to RSS 2023. Project webpage: https://neuse-slam.github.io/neuse

    Robust Change Detection Based on Neural Descriptor Fields

    Full text link
    The ability to reason about changes in the environment is crucial for robots operating over extended periods of time. Agents are expected to capture changes during operation so that actions can be followed to ensure a smooth progression of the working session. However, varying viewing angles and accumulated localization errors make it easy for robots to falsely detect changes in the surrounding world due to low observation overlap and drifted object associations. In this paper, based on the recently proposed category-level Neural Descriptor Fields (NDFs), we develop an object-level online change detection approach that is robust to partially overlapping observations and noisy localization results. Utilizing the shape completion capability and SE(3)-equivariance of NDFs, we represent objects with compact shape codes encoding full object shapes from partial observations. The objects are then organized in a spatial tree structure based on object centers recovered from NDFs for fast queries of object neighborhoods. By associating objects via shape code similarity and comparing local object-neighbor spatial layout, our proposed approach demonstrates robustness to low observation overlap and localization noises. We conduct experiments on both synthetic and real-world sequences and achieve improved change detection results compared to multiple baseline methods. Project webpage: https://yilundu.github.io/ndf_changeComment: 8 pages, 8 figures, and 2 tables. Accepted to IROS 2022. Project webpage: https://yilundu.github.io/ndf_chang
    • …
    corecore